Friday, October 23, 2009

Quasars

Pending problems in QSOs
Quasars (Quasi Stellar Objects, abbreviated as QSOs) are still nowadays, close to half a century after their discovery, objects which are not completely understood. In this brief review a description of the pending problems, inconsistencies and caveats in the QSO's research is presented. The standard paradigm model based on the existence of very massive black holes that are responsible for the QSO's huge luminosities, resulting from to their cosmological redshifts, leaves many facts without explanation. There are several observations which lack a clear explanation, for instance: the absence of bright QSOs at low redshifts, a mysterious evolution not properly understood; the inconsistencies of the absorption lines, such as the different structure of the clouds along the QSO's line of sight and their tangential directions; the correlation of redshifts between QSOs and galaxies; and many others.

Nonrelativistic Quantum Gravity

Aspects of nonrelativistic quantum gravity Physics preprint.
A nonrelativistic approach to quantum gravity is studied. At least for weak gravitational fields it should be a valid approximation. Such an approach can be used to point out problems and prospects inherent in a more exact theory of quantum gravity, yet to be discovered. Nonrelativistic quantum gravity, e.g., shows promise for prohibiting black holes altogether (which would eliminate singularities and also solve the black hole information paradox), gives gravitational radiation even in the spherically symmetric case, and supports non-locality (quantum entanglement). Its predictions should also be testable at length scales well above the "Planck scale", by high-precision experiments feasible with existing technology.