We review progress in understanding dark matter by astrophysics, and particularly via the effect of gravitational lensing. Evidence from many different directions now implies that five sixths of the material content of the universe is in this mysterious form, separate from and beyond the ordinary "baryonic" particles in the standard model of particle physics. Dark matter appears not to interact via the electromagnetic force, and therefore neither emits nor reflects light. However, it definitely does interact via gravity, and has played the most important role in shaping the Universe on large scales. The most successful technique with which to investigate it has so far been gravitational lensing. The curvature of space-time near any gravitating mass (including dark matter) deflects passing rays of light - observably shifting, distorting and magnifying the images of background galaxies. Measurements of such effects currently provide constraints on the mean density of dark matter, and its density relative to baryonic matter; the size and mass of individual dark matter particles; and its cross section under various fundamental forces.
Weak lensing, dark matter and dark energy
Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.
Microlensing as a probe of the Galactic structure; 20 years of microlensing optical depth studies
Microlensing is now a very popular observational astronomical technique. The investigations accessible through this effect range from the dark matter problem to the search for extra-solar planets. In this review, the techniques to search for microlensing effects and to determine optical depths through the monitoring of large samples of stars will be described. The consequences of the published results on the knowledge of the Milky-Way structure and its dark matter component will be discussed. The difficulties and limitations of the ongoing programs and the perspectives of the microlensing optical depth technique as a probe of the Galaxy structure will also be detailed.
No comments:
Post a Comment