A Lorentz invariant model for gravity-induced quantum state reduction is presented, which is mainly developed from the physical argument that the time translation operator in a superposition of macroscopic states is ill-defined. The model leads to a new approach how to overcome the basic problem of relativistic reduction models, the conflict between relativistic covariance and the assumption that state reduction leads to an abrupt change of the wave-function on a space-like hyperplane. Reductions are understood in the model as events on whole space-time regions instead on hyperplanes only. This view enforces a radical change for the formulation of the system's dynamics. A stochastic time flow running quasi orthogonal to the deterministic time evolution inside the four-dimensional space-time is proposed. It is shown that it is possible to formulate on the basis of this new view a meaningful physical model. The model is also checked for possible higher order effects, which provide new starting points for experimental research.
Wednesday, December 23, 2009
Quantum Measurements and General Relativity
There are sticky issues when trying to understand how quantum measurement and general relativity might work together. Relativistic Model for Gravity-Induced Quantum State Reduction
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment